WHAT DoEs My PL/SQL PROGRAM ACTUALLY

Do?
Rune Mgrk, Novo Nordisk Engineering A/S

Oracle offers a database package DBMS PROFILER that can be used for a number of purposes.

In dealing with 3" party products, it is often used for investigating what the pl/sql program actually does, i.e. reporting
on what statements has been executed, but it can also be used for identifying bottlenecks in your pl/sql code .

In this article I will cover the following topics you need to master in order to trace what is happening in a session:
e Introducing dbms_profiler
e Simple use of dbms_profiler
e Using it for identifying a bottleneck.

e Using it for tracing of a pl/sql program.

Along this I will introduce a homegrown tools used for analysing the profiling results, this tool has been created with
Oracle Discoverer.

Dbms profiler

Officially this package has been around since 8i, but never the less it existed already for 8.0.4, but, off course, it wasn’t
documented, neither did the script work properly and had to bee modified by hand to get it installed, furthermore this
package is not installed by a standard installation of the RDBMS, so you got to do it by yourself.

This neatly package is used to monitor the usage and timing of pl/sql packages/functions/procedures ant triggers.

Introducing dbms_profiler

The package DBMS PROFILER can be used to collect information about your pl/sql program units and how well or
poor they perform, the package is not default installed in your database, to get it to work you need to install profiler
package to the SYS schema, and the profiler tables and the profiler package to a user schema.

Installing the profiler tables
To install the profiler tables, sequences you need to run the script ORACLE _HOME\rdbms\admin\proftab.sql.

This script installs the following 3 tables:
Plsql_profiler runs, contains information about the different profiler runs that has been run.
Plsql_profiler units, contains information about which programunits that has been executed in a specific profile run.

Plsql_profiler data, contains information about which codelines of pl/sql code that has been used, and statistical
information about the execution of these.

In figure 1 you can see a diagram of these tables along with a brief description of their columns.

www.odtug.com ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do?

Mork

%z Design Editor -
IEJEiIE Edit Wiew Layout Wersion Ukilities

Generate Tools Fun ‘Window Help

Cpkions

GLOBAL 5

=10 x|

EFLSEL_FROFILER_RUNS (ODTL
[e] 1] 7

L3
O

RUMID
RELATED_RUN
AUMN_OINER
RUN_DATE
RUN_COMMENT
RUN_TOTAL_TME
RUN_SETBI_INFO
RUN_COMMENT
ZPARE1

oooooao
FPRFFPBFFF

5 CO05533

EFLsaL_FROFILER_UNITS (0D
[| |] | v |

B R RUMID

Y 'm UNIT_MUMBER
.Y UNIT_TVPE

A U W IT_CiuM ER,
.Y U NIT_NAME
UNIT_TRIE=TAMP
%Bg TOTAL_TME
H SRARE]

Yoo SPAREZ

O0%0%¥0

QCGE 25

EFLs0L_PROFILER_DATA(

[] |) | |

RE 'w AUNID

RYE 'k UMIT_NUMBER.
g LINES

b TOTAL_OCCGUR
"B TOTAL_TME
"By MIN_TME

b MA_TME
b SPARET

] EPAREZ

g =PARED

g ZPARE+

E |
OoOoo0oooo0#

L

=18 x|

Plsql_profiler runs contains information about the runs
that has been performed. The columns in the table is as

follows:

Column Description

Runid A unique identifier for the run

Related run Purpose is unknown, claim to runid
of a related run, but I’ve never seen
it used.

Run_owner User who started the run

Run_date Timestamp of the date of the run

Run_Comment | User provided text

Run_total time | Elapsed time for this run

The rest of the columns are reserved for future use.

Plsql profiler units, contains information about each
library unit in a specific run. The columns in the table is

as follows:
Column Description
Runid A unique identifier for the run
Unit_ number | Internally generated number for use
in the primary key.
Unit_type The type of the unit.
Unit_owner Library unit owner name

Unit_timestamp

Timestamp of the unit, i.e. the time
the unit was last compiled.

Total time

Elapsed time within this unit,
default to 0 must be calculated after
profiling

The rest of the columns are reserved for future use.

Plsql_profiler data, contains information about each
line of code in a specific run. The columns in the table

is as follows:

Column

Description

Runid

A unique identifier for the run

Unit_number

Internally generated number for use in
the primary key.

Line#

The line# from all_source

Total_occur

Number of times a line was executed.

Total time | Total time spent executing this line.
Min_time Minimum execution time for this line.
Max_time Maximum execution time for this line.

The rest of the columns are reserved for future use.

www.odtug.com

ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

Figure 1 PL/SQL profiler tables

After installation remember to grant all on these tables to public and create public synonyms. If you omit of forget this
point, the next step in the installation will not work.

Installing the profiler packages
To install the DBMS PROFILER-package you need to run the script ORACLE HOME/rdbms/admin/profload.sql.

This package contains a number of procedures and functions, that are useful when profiling pl/sql-code .

The first function is used to start the profiling, when is has been executed statistical data is being colleted for all pl/sql
program units executed in the current session, until you explicit pause or stop the profiling.

function start profiler(run_comment IN varchar2 := sysdate,
run_commentl IN varchar2 := '',
run_nunber QOUT BI NARY_I NTEGER
return binary integer;

To stop profiling you need to know the function:

function stop_profiler return binary integer;

Both function return a binary integer that is an error code, if you choose to investigate the result of the error code any
values different from 0 represents an error, se DBMS PROFILER documentation for further information.

The package contains several overlaying versions (both procedures and functions) of start and stop profiler, included I
guess for you to choose the versions that suits you.

The package also contains other additional procedures and functions, such as:

function pause profiler return binary_integer;

used for pausing the profiler, if you so choose,

function resume profiler return binary integer;

used for resuming the profiling whenever you stopped the profiling

function flush data return binary integer;

used for flushing the collected data from the internal storage to the profiler tables.

Proceure rollup unit(run_number in number, unit in number);

Used calculating the sums on unit level
Procedure rollup_ run(run_number) ;
Used calculating the sums on run level

Coming with the installation of the package is also a number of scripts you can run to identify your bottlenecks, but
those I’m not covering here, hence I’ve build by own eul in discoverer for analysing purposes.

Simple use of dbms_profiler

If you are looking for identifying a bottleneck in your pl/sql program then you could use the profiler as shown in the
following. To investigate you need to perform these simple 5 steps

www.odtug.com 3 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

Starting the profiling
Doing profiling

Stop profiling
Calculate sums.

Al e

See the results

Step 1 Starting the profiling
In order to start the profiling you need to tell the profiling utility to start collecting data, which could be done by
issuing:

declare
v_err number;
v_no binary integer;

begin
v_err := dbms_profiler.start profiler(run_comment => ‘&1
run_comment 1 => sysdate
run_nunber => v_no);
dbms_output.put line(‘Run no ‘||v_nol||’ Error ‘=> v_err);
end;
in SQL*PLUS

Step 2 Doing profiling

I’ve created 2 sample pl/sql programs in order to demonstrate the profiling they look like the following:

CREATE OR REPLACE procedure give all raise is
cursor sel dept is
select deptno
from dept
order by deptno;
begin
for i in 1 .. 2000 loop
for r in sel_dept loop
give_raise(r.deptno,i/1000);
end loop;
end loop;
end;

procedure give_raise (
p_deptno in number,
p_raise_percent in number)
as
begin
update emp set sal = sal + (sal * p raise percent * .01)
where deptno = p_deptno;
commit;
end give_raise;

These programs are really nonsense, but in order to be able to demonstrate then ...

So now I execute the procedure give all raise, the execution will be slightly slower in order to collect the statistics.

Step 3 Stop profiling
After the program give all raise has been executed then I need to stop the profiling. This can be done by issuing the
following:

declare
err number;

www.odtug.com 4 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

begin
err := dbms_profiler.stop profiler;
end;
again in SQL*PLUS.

Step 4 Calculate sums
Oddly enough dbms_profiler does not calculate the sums when profiling, so you need to do al rollup. This can be done
thy the following code:

begin
dbns_profiler.rollup_run(& un_no);
end;
again in SQL*PLUS

Where &run_no is the run number returned in step 1.

Step 5 Viewing the result.
Now it is fairly easy to investigate the profiling result, by joining the profiler tables with user source, you can get a
accurate picture of what the pl/sql program unit actually did spent its time on. The select statement looks like:

SELECT SUBSTR (PPU.UNIT NAME,1,10) UNAME,
PPD. TOTAL_OCCUR,
PPD.TOTAL_TIME,
PPD.MIN TIME,
PPD.MAX TIME,
US.TEXT
FROM PLSQL_PROFILER DATA PPD,
PLSQL PROFILER RUNS PPR,
PLSQL_PROFILER UNITS PPU,
USER_SOURCE US

WHERE PPU.RUNID = PPR.RUNID
AND PPD.UNIT NUMBER = PPU.UNIT_ NUMBER
AND PPD.RUNID = PPU.RUNID
AND US.NAME = PPU.UNIT_NAME
AND US.LINE = PPD.LINE#

AND US.TYPE
AND PPU.RUNID = &l
ORDER BY PPU.UNIT NAME, PPD.LINE#

PPU.UNIT_ TYPE

After executing this you would get a result like the one in the figure below.

UNAME TOTAL OCCUR TOTAL_TIME MIN TIME MAX TIME TEXT

GIVE ALL R 2000 2.677E+10 11414858 356021784 select deptno

GIVE_ALL R 2001 1.153E+09 404520 24447241 for i in 1 .. 2000 loop

GIVE_ALL R 12000 1.835E+11 300596 1.819E+09 for r in sel_dept loop

GIVE ALL R 20001 3.413E+10 72355 196875580 give_raise(r.deptno,i/1000) ;
GIVE RAISE 8000 1.518E+12 35737502 7.828E+10 update emp set sal = sal + (sal *
p_raise_percent *

GIVE RAISE 8000 1.849E+11 5190045 2.019E+10 commit;

Now these 5 steps needs to be repeated every time you find the need to do profiling.

www.odtug.com 5 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

Bottlenecks

When you have identified a pl/sql program where you want do find a specific bottleneck, and you have created the
profiling results, you, in most cases, if the program is really big have a abundance of data available to investigate. |
found it worthwhile to create a EUL in discoverer where I can investigate my results and find the interesting places.
This eul is described in the following.

EUL setup

In the admin tool I’ve created 4 folders, as seen on the screenshot in figure 2, one folder for each table and a new one
based on a view plsql _profiler view see figure 3 where in include the code from the view is included.

E’ Oracle Discoverer Administrs =10 x|
gi\ﬂ File Edit Wwiew Insert Tools ‘Window Help ;l
21X

¥ o 8 EOY B Q|

Lrata |Hierarchies| [term classesl Summariesl

= Profiing programs |

| Plzgl Prafiler Data
- Plsgl Profiler Runs
- Plsgl Profiler Units

- Plz=gl Profiler View

oo ol o]

[z

Figure 2 Discoverer admin screenshot

CREATE OR REPLACE VI EW PLSQL_PROFI LER VI EW
(RUNI D, UNI T_NAME, UNI T_NUMBER, UNI T_TYPE, LI NE#,
TOTAL_OCCUR, TOTAL_TIME, M N_TIME, MAX_TIME, SOURCE_TEXT)
AS
SELECT
Ppu. runi d, PPU.UNI T_NAME, ppu.unit_nunber, ppu.unit_type, ppd.!|ine#,
PPD. TOTAL_OCCUR,
PPD. TOTAL_TI ME,
PPD. M N_TT ME,
PPD. MAX_TI ME,
get _text_line(PPU. UNI T_NAVE, ppu.unit_type, ppd.line#) source_text
FROM PLSQL_PROFT LER_RUNS PPR,
PLSQL_PROFI LER_UNI TS PPU,
PLSQ._PRCFI LER_DATA PPD

VHERE PPU. RUNI D = PPR RUNI D
AND PPD. UNI T_NUMBER = PPU. UNI T_NUMBER
AND PPD. RUNI D = PPU. RUNI D

Figure 3 Plsql_profiler_view

This view joins together information about pl/sql program units with their metrics.

On top of all this I created item classes for all the based on run_id and unit_number, allowing me to drill from folder to
folder, see figure 4.

www.odtug.com 6 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

E’ Oracle Discoverer Administration Edition - [End Use O] x|
gi\ﬂ File Edit WYiew Insert Tools ‘Window Help _|5’|£|
| ey e o eaDe| e e
Data IHierarchies Item '3|ﬂ$333|5ummaries|
Show w
=[] Run id drill -

+ﬁ List of walues

5 uf'D Tterns using this item class (with drill bo detail)
L g Plsgl Profiler Runs.Runid

Dﬁ Plsql Prafiler Wiew, Runid

>Ef';1 Plsgl Prafiler Units. Runid

""" |:|-":| Plsgl Profiler Diata. Runid
+ﬁ List of walues
—ﬂif'j Iterns using this item class (with drill bo detaily

Dﬁ Plsgl Profiler Wiew, Unit Murmber

>Eﬁ Pl=gl Profiler Units, Unit Murnber
“-Lgh Plsgl Profiler Data,Unit Mumber =

T~

Figure 4 Discoverer admin item classes

With all this in place in now have an environment where i easily can navigate my profiling results, and create
customized reports, as seen in the next section.

End user tool
In the end user tool, all i have to start up is a simple report with one tab page based on the folder plsql profiler runs as
seen in figure 5, where run no 122 seems interesting.

'® Oracle Discoverer - [PROFILER] - 0| x|

21 File EBdit Wiew Sheet Format Tools Graph Window Help _|E|i|

WEEHSR AD0O0OR S I &8 8= X

[Tahoma A -l culss=EEn g, @0 W
Runid | Related Run | Run Cwner | MRun Date | Run Comment | Run System Info | Run Comment1 | rRun tokal time 11000000 sec | &

k1 16 0|AFPS 23-APR-200| Aukomatic praf 23-APR-06 107520151823
Fz 21 0 |APPS 23-APR-200(Automatic praof 23-APR-06 166,461 19076
K3) 0|APPS 05-MaY-200 Automatic praf 05-MaY-06 17600, 79325498
F 4 122 0|AFPPS 03-MAY-200 Aukomatic prof 2006-05-05 646473, 75855645

w
A E sheet 1 Sheetz hT] sheets 3 sheeta]] 4| | 3

A

Figure 5 Displaying the different runs

www.odtug.com 7 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do?

Mork

Now it is simple click and double click to navigate around my information, with a double click I get information about
the units involved in the run 122, as seen in figure 6.

® oracle Discoverer - [PROFILER] =10 x|
27 File Edit Wiew Sheet Format Tools Graph Window Help |7 x|
QFHSR QOOP A9 ul = 8& = =
[T Tahoma ~fe =] B £ u‘%%%’gsb‘ﬁ, 1%
MRunid | Mnit Mumber | Uik Type | Unit Cwner | Unik Mame | Bnit Timestamp | Tokal Tirme 3
F1 122 1 [PACKAGE §5Y5 DEMS_PRO|ZZ2-APR-2006 63904
K2 122 Z2 [PACKAGE EAPPS FMD_GLOBY Z2-APR-2006 41270649
F3 122 3 [PACKAGE EAPPS ICH_SEC |Z2-APR-20068 123035520
F 4 122 4 [PACKAGE §5Y5 STANDARD|13-APR-2003 143663450
K5 122 5 [PACKAGE §5YS DBMS_SESS13-APR-2003 1925583
F G 122 & [PACKAGE EAPPS FMD_PROF]22-APR-2006 FS1778970
K7 122 7 [PACKAGE §5Y5 DEMS_UTIL 17-5EP-2004 2003146
Fa 122 & [PACKAGE EAPPS FMD_WEE_| 17-5EP-2004 149026
F9 122 9 (PACKAGE JAPPS ICH_CABC | 10-OCT-2000 19163
F 10 122 10 (PACKAGE EAPPS ICH_PLUG_|17-5EP-2004 57574
F11 122 11 [PACKAGE EAPPS FMD_CLIEM 28-JUL-2003 21925925
k12 122 12 |PACKAGE B5YS DBMS_APPL 13-APR-20032 827a7
k13 122 13 |PACKAGE EAPPS FMD_FUMC]22-APR-2006 274202937
14 122 14 |PACKAGE EAPPS FMD_LOig [25-JUL-2003 72455584
F 15 122 15 [PACKAGE EAPPS FMD_ACL] | 22-APR-2006 146404
F l& 122 16 [ANOMYMO| < ananymads < anony mo 17804
F 17 122 17 [ANOMYMO| < anany oy < anonymo Sq229
F 15 122 15 [ANOMYMO| < anany ol < anonymo 41855
F 19 122 19 [ANOMYMO| < anany mads < anony mo 69255
F 20 122 20 |PACKAGE EAPPS FMD_MESS 22-APR-2006 BE247566a0 -
A [} sheet s/ Kl | _>|_I
T

Figure 6 Units executed

And here line 13 looks interesting, so by double clicking I get the information about the specific lines executed along
with the metrics for them, as seen in figure 7.

www.odtug.com

ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

=
7 File Edit View Shest Format Tools Graph Window Help =181

R EHSL Q002 L 9 |ul =8 i = x
I'ﬁ‘Tahoma jIS ﬂ B ¢ U ‘% = EEE?—"& PR :=|ﬂ'ﬁ_l.§?_

Funid | Unit Mame | Unit Mumber | Unit Type | Line# | Tokal Qccor | Tokal Time | Min Time | Max Time Source Text ;l

100 122 [FMD_FUNC 13 |PACKAGE 367 o 1] o zi=z+1;0

101 122 |FMD_FUNC 13|PACKAGEY 368 0 0 0 0 tbl_menu_jd(z) := rec.MENU_ID

102 122 |[FMD_FUNC 13|PACKAGE] 389 0 0 0 0 Ehl_ent_seqiz) = rec.EMTRY_SE

103 122 [FMD_FUNC 13 |PACKAGE 370 o 1] o o thl_Func_id{z) := rec. FUNCTIO

104 122 |FMD_FUNC 13|PACKAGEE 371 0 0 0 0 tbl_subrmnu_id {2):= rec.5UB_M

105 122 |[FMD_FUNC 13|PACKAGEY 372 0 0 0 0 Ehl_grt_Flg(z) := rec. GRANT_FL

106 122 |FMD_FUNC 13 | PACKAGE 374 u} u] u} last_index 1= z;0

107 122 |FMD_FUMNC 13 |PACKAGE 351 41 21602 322 123a6| foriinl .. last_index loopO

105 122 [FMD_FUNC 13 |PACKAGE 382 an 195791 84 Z2164 fnd_log.string(FMD LOG,LEVEL S

109 122 |FMD_FUNC 13| PACKAGE 389 40 7269 127 540 entry_excluded ;= FALSE; O

110 122 |FMD_FUNC 13|PACKAGEE 391 40| o1ez3 494 10163 if (tbl_func_id(i) is not MULLYO) e

111 122 [FMD_FUNC 13 |PACKAGE 393 2 3461 136 3324 fnd_log.string{FRD_LOG.LEYEL |

112 122 |FMD_FUMNC 13 |PACKAGE 396 El 1102 a3 297 entry_excluded ;= TRUE; O

113 122 |FMD_FUMNC 13 |PACKAGE 400 3l 14251 330 1763 rull; O

114 122 [FMD_FUNC 13 |PACKAGE 404 40 3668 172 309 if {mat entry_excluded) thenO

115 122 |FMD_FUMNC 13 |PACKAGE 405 78 224403 97 9454 frd_log. string(FMD Lo, LEVEL_S

116 122 |FMD_FUNC 13|PACKAGEE 411 za) 32148 Ce4 3437 if (tbl_func_id(i} = p_function_|

117 122 [FMD_FUNC 13 |PACKAGE 414 2 1536 122 1414 fnd_log.string{FRD_LOG.LEYEL |

113 122 |FMD_FUMNC 13 |PACKAGE 417 1 9355 9355 9355 return TRUE; O

119 122 |FMD_FUMNC 13 |PACKAGE 422 35 13003 432 526 if {tbl_submnu_id(i) is not MJLL) &

120 122 [FMD_FUNC 13 |PACKAGE 423 5] 11445 510 3211 menulisk{menulist_size) := thi_s =
‘ 1’1 E SheLtg l:i\:[\ﬁl:lalgg_e‘t 10 k| Do ACE a2 7 = heh e 104 [T raarilick cine 1 — rmarlick cina _"I—I
wiarking. ., [4

Figure 7 Metrics pr unit

Now what does my program do?

When extending a 3" party environment, like the Oracle E*business suite, you often need to investigate what the
underlying code is actually doing in order to have your extension work properly.

You first need to identify the pl/sql program in play, but when that is done you can use the same simple steps as
mentioned above to create a report on the code executed.

During the preparation of this article I’ve spend some time investigating the e*business suite to see if I could build in
the use of dbms_profiler in their standard code, and sadly i had to conclude that it was not possible, even though that 1
was convinced that it should be possible.

I did mange to get it working for the forms part of E*bus, but i was unable to get it to work for the self-service part of it,
the part building on J2EE. The reason for this is that selfservice does not have persistent connections, and oracle did not
create a hook (or trigger) where you could direct any code executed to stop the profiling. So starting the profiling was
possible to extending the fnd_global package, but stopping the profiling proved not possible due to spawning of
processes.

Newer the less I used the profiling method in order to follow a specific package because i needed to know what exactly
happens when a resource is allocated to a project. By using the internal trace mechanism in E*bus, I identified that the
procedure used for this was pa_assigments pub.create assignments, so therefore i could start the profiling, execute the
package, and stop it again, and then inverstigate what happend.

The result of this cannot be included in this article, hence the number of lines executed is well above 10000, but during
the presentation in will include a live demonstration.

www.odtug.com 9 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mork

Conclusion

In this article I’ve shown that concepts of dbms_profiler, and how is used. I also presented a discoverer framework that
can be used for analyzing profiling results.

Thank you very much; any questions or ideas feel free to contact me at runm@nne.dk.

www.odtug.com 10 ODTUG Kaleidoscope 2006

	Main Menu
	Previous Menu

	Search CD
	Search Results
	Print

