
WHAT DOES MY PL/SQL PROGRAM ACTUALLY
DO?
Rune Mørk, Novo Nordisk Engineering A/S

Oracle offers a database package DBMS_PROFILER that can be used for a number of purposes.

In dealing with 3rd party products, it is often used for investigating what the pl/sql program actually does, i.e. reporting
on what statements has been executed, but it can also be used for identifying bottlenecks in your pl/sql code .

In this article I will cover the following topics you need to master in order to trace what is happening in a session:

• Introducing dbms_profiler

• Simple use of dbms_profiler

• Using it for identifying a bottleneck.

• Using it for tracing of a pl/sql program.

Along this I will introduce a homegrown tools used for analysing the profiling results, this tool has been created with
Oracle Discoverer.

Dbms profiler
Officially this package has been around since 8i, but never the less it existed already for 8.0.4, but, off course, it wasn’t
documented, neither did the script work properly and had to bee modified by hand to get it installed, furthermore this
package is not installed by a standard installation of the RDBMS, so you got to do it by yourself.

This neatly package is used to monitor the usage and timing of pl/sql packages/functions/procedures ant triggers.

Introducing dbms_profiler
The package DBMS_PROFILER can be used to collect information about your pl/sql program units and how well or
poor they perform, the package is not default installed in your database, to get it to work you need to install profiler
package to the SYS schema, and the profiler tables and the profiler package to a user schema.

Installing the profiler tables
To install the profiler tables, sequences you need to run the script ORACLE_HOME\rdbms\admin\proftab.sql.

This script installs the following 3 tables:

Plsql_profiler_runs, contains information about the different profiler runs that has been run.

Plsql_profiler_units, contains information about which programunits that has been executed in a specific profile run.

Plsql_profiler_data, contains information about which codelines of pl/sql code that has been used, and statistical
information about the execution of these.

In figure 1 you can see a diagram of these tables along with a brief description of their columns.

www.odtug.com ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

Plsql_profiler_runs contains information about the runs
that has been performed. The columns in the table is as
follows:

Column Description

Runid A unique identifier for the run

Related_run Purpose is unknown, claim to runid
of a related run, but I’ve never seen
it used.

Run_owner User who started the run

Run_date Timestamp of the date of the run

Run_Comment User provided text

Run_total_time Elapsed time for this run

The rest of the columns are reserved for future use.

Plsql_profiler_units, contains information about each
library unit in a specific run. The columns in the table is
as follows:

Column Description

Runid A unique identifier for the run

Unit_number Internally generated number for use
in the primary key.

Unit_type The type of the unit.

Unit_owner Library unit owner name

Unit_timestamp Timestamp of the unit, i.e. the time
the unit was last compiled.

Total_time Elapsed time within this unit,
default to 0 must be calculated after
profiling

The rest of the columns are reserved for future use.

Plsql_profiler_data, contains information about each
line of code in a specific run. The columns in the table
is as follows:

Column Description

Runid A unique identifier for the run

Unit_number Internally generated number for use in
the primary key.

Line# The line# from all_source

Total_occur Number of times a line was executed.

Total_time Total time spent executing this line.

Min_time Minimum execution time for this line.

Max_time Maximum execution time for this line.

The rest of the columns are reserved for future use.

www.odtug.com 2 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

Figure 1 PL/SQL profiler tables

After installation remember to grant all on these tables to public and create public synonyms. If you omit of forget this
point, the next step in the installation will not work.

Installing the profiler packages
To install the DBMS_PROFILER-package you need to run the script ORACLE_HOME/rdbms/admin/profload.sql.

This package contains a number of procedures and functions, that are useful when profiling pl/sql-code .

The first function is used to start the profiling, when is has been executed statistical data is being colleted for all pl/sql
program units executed in the current session, until you explicit pause or stop the profiling.

function start_profiler(run_comment IN varchar2 := sysdate,
 run_comment1 IN varchar2 := '',

run_number OUT BINARY_INTEGER)
 return binary_integer;

To stop profiling you need to know the function:
function stop_profiler return binary_integer;

Both function return a binary integer that is an error code, if you choose to investigate the result of the error code any
values different from 0 represents an error, se DBMS_PROFILER documentation for further information.

The package contains several overlaying versions (both procedures and functions) of start and stop profiler, included I
guess for you to choose the versions that suits you.

The package also contains other additional procedures and functions, such as:
function pause_profiler return binary_integer;

used for pausing the profiler, if you so choose,
function resume_profiler return binary_integer;

used for resuming the profiling whenever you stopped the profiling
function flush_data return binary_integer;

used for flushing the collected data from the internal storage to the profiler tables.
Proceure rollup_unit(run_number in number, unit in number);

 Used calculating the sums on unit level

Procedure rollup_run(run_number);

Used calculating the sums on run level

Coming with the installation of the package is also a number of scripts you can run to identify your bottlenecks, but
those I’m not covering here, hence I’ve build by own eul in discoverer for analysing purposes.

Simple use of dbms_profiler
If you are looking for identifying a bottleneck in your pl/sql program then you could use the profiler as shown in the
following. To investigate you need to perform these simple 5 steps

www.odtug.com 3 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

1. Starting the profiling
2. Doing profiling
3. Stop profiling
4. Calculate sums.
5. See the results

Step 1 Starting the profiling
In order to start the profiling you need to tell the profiling utility to start collecting data, which could be done by
issuing:

declare
 v_err number;
 v_no binary_integer;
begin
 v_err := dbms_profiler.start_profiler(run_comment => ‘&1’

 run_comment1 => sysdate
 run_number => v_no);

 dbms_output.put_line(‘Run no ‘||v_no||’ Error ‘=> v_err);
end;

in SQL*PLUS

Step 2 Doing profiling
I’ve created 2 sample pl/sql programs in order to demonstrate the profiling they look like the following:

CREATE OR REPLACE procedure give_all_raise is
cursor sel_dept is
select deptno
from dept
order by deptno;
begin
 for i in 1 .. 2000 loop
 for r in sel_dept loop
 give_raise(r.deptno,i/1000);
 end loop;
 end loop;
 end;

procedure give_raise (
 p_deptno in number,
 p_raise_percent in number)
as
begin
 update emp set sal = sal + (sal * p_raise_percent * .01)
 where deptno = p_deptno;
 commit;
end give_raise;

These programs are really nonsense, but in order to be able to demonstrate then ...

So now I execute the procedure give_all_raise, the execution will be slightly slower in order to collect the statistics.

Step 3 Stop profiling
After the program give_all_raise has been executed then I need to stop the profiling. This can be done by issuing the
following:

declare
 err number;

www.odtug.com 4 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

begin
 err := dbms_profiler.stop_profiler;
end;

again in SQL*PLUS.

Step 4 Calculate sums
Oddly enough dbms_profiler does not calculate the sums when profiling, so you need to do al rollup. This can be done
thy the following code:

begin
 dbms_profiler.rollup_run(&run_no);
end;

again in SQL*PLUS

Where &run_no is the run number returned in step 1.

Step 5 Viewing the result.
Now it is fairly easy to investigate the profiling result, by joining the profiler tables with user_source, you can get a
accurate picture of what the pl/sql program unit actually did spent its time on. The select statement looks like:

SELECT SUBSTR(PPU.UNIT_NAME,1,10) UNAME,
 PPD.TOTAL_OCCUR,
 PPD.TOTAL_TIME,
 PPD.MIN_TIME,
 PPD.MAX_TIME,
 US.TEXT
 FROM PLSQL_PROFILER_DATA PPD,
 PLSQL_PROFILER_RUNS PPR,
 PLSQL_PROFILER_UNITS PPU,
 USER_SOURCE US
 WHERE PPU.RUNID = PPR.RUNID
 AND PPD.UNIT_NUMBER = PPU.UNIT_NUMBER
 AND PPD.RUNID = PPU.RUNID
 AND US.NAME = PPU.UNIT_NAME
 AND US.LINE = PPD.LINE#
 AND US.TYPE = PPU.UNIT_TYPE
 AND PPU.RUNID = &1
 ORDER BY PPU.UNIT_NAME, PPD.LINE#

After executing this you would get a result like the one in the figure below.

UNAME TOTAL_OCCUR TOTAL_TIME MIN_TIME MAX_TIME TEXT
---------- ----------- ---------- --------- --------- ---
-
GIVE_ALL_R 2000 2.677E+10 11414858 356021784 select deptno
GIVE_ALL_R 2001 1.153E+09 404520 24447241 for i in 1 .. 2000 loop
GIVE_ALL_R 12000 1.835E+11 300596 1.819E+09 for r in sel_dept loop
GIVE_ALL_R 20001 3.413E+10 72355 196875580 give_raise(r.deptno,i/1000);
GIVE_RAISE 8000 1.518E+12 35737502 7.828E+10 update emp set sal = sal + (sal *
p_raise_percent *
GIVE_RAISE 8000 1.849E+11 5190045 2.019E+10 commit;

Now these 5 steps needs to be repeated every time you find the need to do profiling.

www.odtug.com 5 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

Bottlenecks
When you have identified a pl/sql program where you want do find a specific bottleneck, and you have created the
profiling results, you, in most cases, if the program is really big have a abundance of data available to investigate. I
found it worthwhile to create a EUL in discoverer where I can investigate my results and find the interesting places.
This eul is described in the following.

EUL setup
In the admin tool I’ve created 4 folders, as seen on the screenshot in figure 2, one folder for each table and a new one
based on a view plsql_profiler_view see figure 3 where in include the code from the view is included.

Figure 2 Discoverer admin screenshot

CREATE OR REPLACE VIEW PLSQL_PROFILER_VIEW
(RUNID, UNIT_NAME, UNIT_NUMBER, UNIT_TYPE, LINE#,
 TOTAL_OCCUR, TOTAL_TIME, MIN_TIME, MAX_TIME, SOURCE_TEXT)
AS
SELECT
 Ppu.runid, PPU.UNIT_NAME, ppu.unit_number, ppu.unit_type, ppd.line#,
 PPD.TOTAL_OCCUR,
 PPD.TOTAL_TIME,
 PPD.MIN_TIME,
 PPD.MAX_TIME,
 get_text_line(PPU.UNIT_NAME, ppu.unit_type, ppd.line#) source_text
 FROM PLSQL_PROFILER_RUNS PPR,
 PLSQL_PROFILER_UNITS PPU,
PLSQL_PROFILER_DATA PPD
WHERE PPU.RUNID = PPR.RUNID
 AND PPD.UNIT_NUMBER = PPU.UNIT_NUMBER
 AND PPD.RUNID = PPU.RUNID

Figure 3 Plsql_profiler_view
This view joins together information about pl/sql program units with their metrics.

On top of all this I created item classes for all the based on run_id and unit_number, allowing me to drill from folder to
folder, see figure 4.

www.odtug.com 6 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

Figure 4 Discoverer admin item classes

With all this in place in now have an environment where i easily can navigate my profiling results, and create
customized reports, as seen in the next section.

End user tool
In the end user tool, all i have to start up is a simple report with one tab page based on the folder plsql_profiler_runs as
seen in figure 5, where run no 122 seems interesting.

Figure 5 Displaying the different runs

www.odtug.com 7 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

Now it is simple click and double click to navigate around my information, with a double click I get information about
the units involved in the run 122, as seen in figure 6.

Figure 6 Units executed

And here line 13 looks interesting, so by double clicking I get the information about the specific lines executed along
with the metrics for them, as seen in figure 7.

www.odtug.com 8 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

Figure 7 Metrics pr unit

Now what does my program do?
When extending a 3rd party environment, like the Oracle E*business suite, you often need to investigate what the
underlying code is actually doing in order to have your extension work properly.

You first need to identify the pl/sql program in play, but when that is done you can use the same simple steps as
mentioned above to create a report on the code executed.

During the preparation of this article I’ve spend some time investigating the e*business suite to see if I could build in
the use of dbms_profiler in their standard code, and sadly i had to conclude that it was not possible, even though that I
was convinced that it should be possible.

I did mange to get it working for the forms part of E*bus, but i was unable to get it to work for the self-service part of it,
the part building on J2EE. The reason for this is that selfservice does not have persistent connections, and oracle did not
create a hook (or trigger) where you could direct any code executed to stop the profiling. So starting the profiling was
possible to extending the fnd_global package, but stopping the profiling proved not possible due to spawning of
processes.

Newer the less I used the profiling method in order to follow a specific package because i needed to know what exactly
happens when a resource is allocated to a project. By using the internal trace mechanism in E*bus, I identified that the
procedure used for this was pa_assigments_pub.create_assignments, so therefore i could start the profiling, execute the
package, and stop it again, and then inverstigate what happend.

The result of this cannot be included in this article, hence the number of lines executed is well above 10000, but during
the presentation in will include a live demonstration.

www.odtug.com 9 ODTUG Kaleidoscope 2006

What Does My PL/SQL Program Actually Do? Mørk

www.odtug.com 10 ODTUG Kaleidoscope 2006

Conclusion
 In this article I’ve shown that concepts of dbms_profiler, and how is used. I also presented a discoverer framework that
can be used for analyzing profiling results.

Thank you very much; any questions or ideas feel free to contact me at runm@nne.dk.

	Main Menu
	Previous Menu

	Search CD
	Search Results
	Print

